Expected Utility

Bruno Salcedo

Cornell University \cdot Decision Theory \cdot Spring 2017

motivating examples

powerball

powerball

POWERBALL EXPECTED PAYOUT

NUMBERS MATCHED	PRIZE	PRIZE - COST	LIKELIHOOD	PROBABILITY	(PRIZE - COST) X PROBABILITY
5 white and red	\$450,000,000	\$449,999,998	1 in 292,201,338	0.000000034	\$1.54
5 white	\$1,000,000	\$999,998	1 in 11,688,053.52	0.0000000856	\$0.09
4 white and red	\$50,000	\$49,998	1 in 913,129.18	0.0000010951	\$0.05
4 white	\$100	\$98	1 in 36,525.17	0.0000273784	\$0.00
3 white and red	\$100	\$98	1 in 14,494.11	0.0000689935	\$0.01
3 white	\$7	\$5	1 in 579.76	0.0017248517	\$0.01
2 white and red	\$7	\$5	1 in 701.33	0.0014258623	\$0.01
1 white and red	\$4	\$2	1 in 91.98	0.0108719287	\$0.02
Red	\$4	\$2	1 in 38.32	0.0260960334	\$0.05
Nothing	\$0	-\$2	1 in 1.04	0.9597837679	-\$1.92

EXPECTED VALUE: -\$0.14

SOURCE: Business Insider calculations with odds from powerball.com

BUSINESS INSIDER

st. petersburg paradox

- Flip a fair coin until it lands tails
- If we flipped the coin n times, you get 2^n
- How much would you be willing to pay to participate?

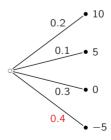
$$\mathbb{E}[2^n] = \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 4 + \frac{1}{8} \cdot 8 + \dots = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot 2^n = \infty$$

$$\mathbb{E}[\log(2^n)] = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \log(2^n) = \log(2) \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot n = 2\log(2) \approx 0.60$$

von Neumann and Morgestern

simple lotteries

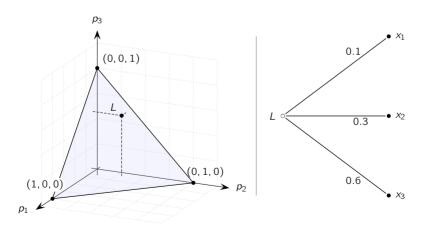
- A simple lottery is a tuple $L = (p_1, x_1; p_2, x_2; \dots p_n, x_n)$
 - Monetary prizes $x_1, \ldots, x_n \in X \subseteq \mathbb{R}$
 - Probability distribution (p_1, \ldots, p_n) , p_i is the probability of x_i
- ullet Let ${\mathcal L}$ denote the set of simple lotteries
- **Example:** L = (10, 0.2; 5, 0.1; 0, 0.3; -5, 0.4)



simplex

• Simple lotteries given a fixed set of prizes x_1, \ldots, x_n correspond to points in the n-dimensional simplex

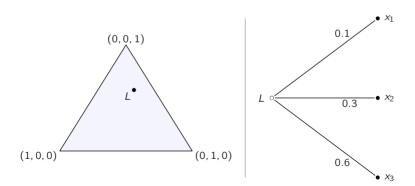
$$\Delta^n = \left\{ (p_1, \dots p_n) \in \mathbb{R}^n \,\middle|\, 0 \le p_i \le 1 \quad \& \quad p_1 + \dots + p_n = 1 \right\}$$



simplex

• Simple lotteries given a fixed set of prizes x_1, \ldots, x_n correspond to points in the n-dimensional simplex

$$\Delta^{n} = \{ (p_{1}, \dots p_{n}) \in \mathbb{R}^{n} \mid 0 \le p_{i} \le 1 \& p_{1} + \dots + p_{n} = 1 \}$$



lottery mixtures

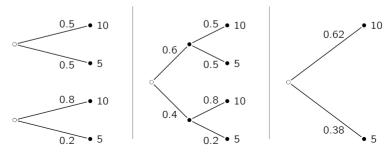
• For $0 \le \alpha \le 1$ and lotteries $L = (p_1, x_1; p_2, x_2; \dots p_n, x_n)$ and $M = (q_1, x_1; q_2, x_2; \dots q_n, x_n)$ with the same set of prizes, define

$$\alpha L \oplus (1-\alpha)M = (r_1, x_1; r_2, x_2; \dots r_n, x_n)$$

where

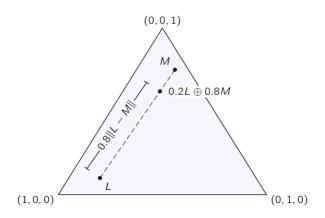
$$r_k = \alpha p_k + (1 - \alpha) q_k$$

• **Example:** $L = (0.5, 10; 0.5, 5), M = (0.8, 10; 0.2, 5), \alpha = 0.6$



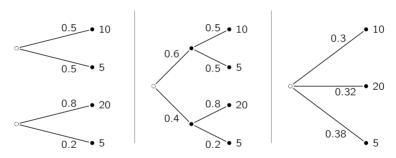
geometry of mixtures

- With a fixed set of prizes x_1, \ldots, x_n , mixtures between lotteries correspond to points in the line segment between them
- The mixture weights determine the location within the segment



lottery mixtures

- Also possible to mix lotteries with different prizes
- Example: $L = (0.5, 10; 0.5, 5), M = (0.8, 20; 0.2, 5), \alpha = 0.6$



$$\alpha L \oplus (1 - \alpha)M = (0.3, 10; 0.32, 20; 0.38, 5)$$

expected utility

- Reported preferences \succ on $\mathcal L$
- A utility function $U: \mathcal{L} \to \mathbb{R}$ for \succ is an expected utility function if it can be written as

$$U(L) = \sum_{k=1}^{n} p_i u(x_i)$$

for some function $u: \mathbb{R} \to \mathbb{R}$

ullet If you think of the prizes as a random variable ${f x}$, then

$$U(L) = \mathbb{E}_L[u(\mathbf{x})]$$

• The function *u* is called a Bernoulli utility function

expected utility axioms

- **Axiom 1**: (Preference order) ≻ is a asymmetric and negatively transitive
- **Axiom 2**: (Continuity) For all simple lotteries L, M, $N \in \mathcal{L}$, if $L \succ M \succ N$ then there exist $\alpha, \beta \in (0, 1)$ such that

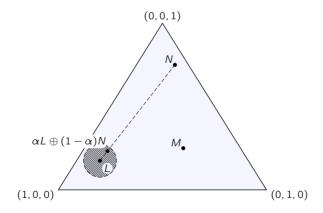
$$\alpha L \oplus (1-\alpha)N \succ M \succ \beta N \oplus (1-\beta)N$$

• **Axiom 3**: (Independence) For all lotteries L, M, $N \in \mathcal{L}$ and $\alpha \in (0, 1]$, if $L \succ M$, then

$$\alpha L \oplus (1-\alpha)N \succ \alpha M \oplus (1-\alpha)N$$

continuity

- The continuity axiom can be thought of as requiring that strict preference is preserved by sufficiently small perturbations in the probabilities
 - If L > M, then so are lotteries which are close enough to L (hatched area)
 - This includes $\alpha L \oplus (1-\alpha)N$ with α close enough to 1



independence

- If *L* is preferred to *M*, then a mixture of *L* with *N* is also preferred to a mixture of *M* with *N* using the same mixing weights
- Independence gives the expected-utility structure
- Similar to the independent-factors requirement from previous notes (expected utility is a form of additive separability)

example

• How do you rank the following lotteries?

How do you rank the following lotteries?



- Independence says that if you prefer L to M, then you also prefer L' to M'
- Note that $L' = 0.5L \oplus 0.5N$ and $M' = 0.5M \oplus 0.5N$, for some lottery N (which lottery?)

allais' paradox

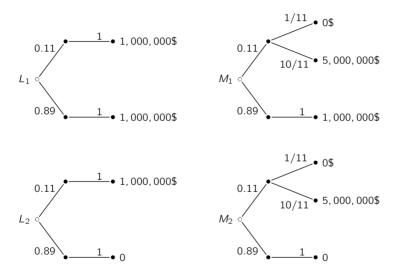
• How do you rank the following lotteries?

• How do you rank the following lotteries?

• Many people report $L_1 \succ M_1$ and $M_2 \succ L_2$

allais' paradox

• Note that we can write



• Independence would imply that $L_1 \succ M_1$ if and only if $L_2 \succ M_2$ (why?)

von neumann-morgenstern theorem

Theorem:

- (a) A binary relation > over L has an expected utility representation if and only if it satisfies axioms 1-3
- (b) If U and V are expected utility representations of \succ , then there exist constants $a,b\in\mathbb{R},\ a>0$, such that $U(\cdot)=a\cdot V(\cdot)+b$

proof of necessity

- Suppose U is an expected utility representation of \succ
- Axiom 1 follows from the same arguments as before
- For $0 \le \alpha \le 1$ and lotteries $L = (p_1, x_1; p_2, x_2; \dots p_n, x_n)$ and $M = (q_1, x_1; q_2, x_2; \dots q_n, x_n)$ note that

$$V(\alpha L \oplus (1-\alpha)M) = \sum_{i=1}^{n} \left[\alpha p_i + (1-\alpha)q_i\right] \cdot u(x_i)$$

$$= \sum_{i=1}^{n} \left[\alpha p_i u(x_i) + (1-\alpha)q_i u(x_i)\right]$$

$$= \alpha \sum_{i=1}^{n} p_i u(x_i) + (1-\alpha) \sum_{i=1}^{n} (q_i u(x_i))$$

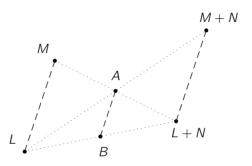
$$= \alpha V(L) + (1-\alpha)V(M)$$

independence and linearity

- Fix the set of prizes so that lotteries can be though of as vectors in Δ^n
- The following proposition that, under axioms 1–3, preferences are preserved under translations
- This means that the indifference curves are parallel lines

Proposition: Given lotteries $L, M \in \Delta^n$, and a vector $N \in \mathbb{R}^n$, if L + N and M + N are also lotteries and \succ satisfies axioms 1–3, then

$$L \succ M \Leftrightarrow (L+N) \succ (M+N)$$



Proof sketch:

- If (L + N) and (M + N) are lotteries, then so are A and B
- $A = 0.5M \oplus 0.5(L + N)$ and $A = 0.5L \oplus 0.5(M + N)$
- Since $A = 0.5M \oplus 0.5(L + N)$, independence says that if L > M then B > A
- Since $A = 0.5L \oplus 0.5(M + N)$, independence says that if $B \succ A$ then $(L + N) \succ (M + N)$

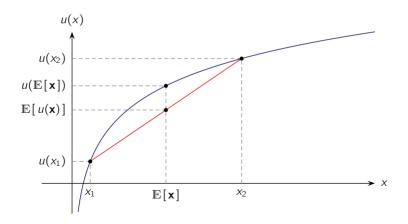
risk aversion

risk attitudes

- For the rest of these slides, suppose *u* is strictly increasing (our decision maker always prefers more money) and twice continuously differentiable
- Risk-neutral decision maker $-\mathbb{E}[u(\mathbf{x})] = u(\mathbb{E}[\mathbf{x}])$ for every random variable \mathbf{x}
- Risk-averse decision maker $-\mathbb{E}[u(\mathbf{x})] \leq u(\mathbb{E}[\mathbf{x}])$ for every r.v. \mathbf{x}
- Risk-loving decision maker $-\mathbb{E}[u(\mathbf{x})] \ge u(\mathbb{E}[\mathbf{x}])$ for every r.v. \mathbf{x}

jensen's inequality

- A set is convex if it contains all the line-segments between its points
- A function is concave if its hypograph is a convex set
- Risk aversion is equivalent to *u* being concave

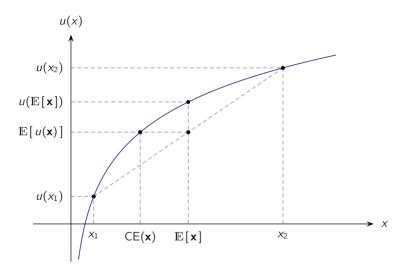


certainty equivalent

Definition: Given u, he certainty equivalent of a lottery \mathbf{x} is the is the guaranteed amount of money that an individual with Bernoulli utility function u would view as equally desirable as \mathbf{x} , i.e.,

$$CE_u(\mathbf{x}) = u^{-1} \left(\mathbb{E} \left[u(\mathbf{x}) \right] \right)$$

- Risk-neutral decision maker $CE(L) = \mathbb{E}[\mathbf{x}]$ for every r.v. \mathbf{x}
- Risk-averse decision maker $-CE(L) \leq \mathbb{E}[\mathbf{x}]$ for every r.v. \mathbf{x}
- Risk-loving decision maker $-CE(L) \ge \mathbb{E}[\mathbf{x}]$ for every r.v. \mathbf{x}



arrow-pratt index

Definition: The arrow-prat coefficient of absolute risk aversion of u at x is

$$A_u(x) = -\frac{u''(x)}{u'(x)}$$

• Constant absolute risk aversion (CARA)

$$u(x) = -\exp(-\alpha x)$$

• Indeed $u'(x) = \alpha u(x)$ and $u''(x) = \alpha^2 u(x) \Rightarrow A_u(x) = \alpha$

more risk averse than

Theorem: Given any two strictly increasing Bernoulli utility functions u and v, the following are equivalent

- (a) $A_u(x) \ge A_v(x)$ for all x(b) $CE_u(\mathbf{x}) \le CE_v(\mathbf{x})$ for all \mathbf{x}
- (c) There exists a strictly increasing concave function gsuch that $u = g \circ v$

• In that case, we say that v is (weakly) more risk averse than u

proof sketch

- There always exist a strictly increasing and twice continuously differentiable function g such that $v = g \circ u$ (why?)
- By the chain-rule of differential calculus

$$v'(x) = g'(u(x))u'(x)$$
$$v''(x) = g'(u(x))u''(x) + g''(u(x))(u'(x))^{2}$$

• If g is concave, then g'' < 0 and thus

$$A_{v}(x) = -\frac{v''(x)}{v'(x)} = -\frac{g'(u(x))u''(x) + g''(u(x))(u'(x))^{2}}{g'(u(x))u'(x)}$$
$$= A_{u}(x) - \frac{g''(u(x))u'(x)}{g'(u(x))} \ge A_{u}(x)$$

proof sketch

• If g is concave, then Jensen's inequality implies that

$$v(CE_{v}(\mathbf{x})) = \mathbb{E}[v(\mathbf{x})] = \mathbb{E}[g(u(\mathbf{x}))]$$

$$\leq g(\mathbb{E}[u(\mathbf{x})]) = g(u(CE_{u}(\mathbf{x}))) = v(CE_{u}(\mathbf{x}))$$

• Since *v* is strictly increasing, this implies that

$$CE_{v}(\mathbf{x}) \leq CE_{u}(\mathbf{x})$$

optimal portfolios

a risky asset

- ullet An expected utility maximizer with initial wealth ω must decide a quantity lpha to invest on a risky asset
- The asset has a random gross return of **z** per dollar invested
- The final wealth of the investor will be $w \alpha + \alpha z$
- The optimal investment is the solution to the program

$$\max_{\alpha} \quad \mathbb{E}\left[u(w + \alpha(\mathbf{z} - 1))\right]$$

s.t. $0 \le \alpha \le w$

• Let α^* denote this solution

a risky asset

Proposition: A risk averse agent will always invest a positive amount on assets with positive expected return, i.e., if $\mathbb{E}[\mathbf{z}] > 1$ then $\alpha^* > 0$

Proof:

• Let $U(\alpha)$ denote the agent's expected utility

$$U'(\alpha) = \mathbb{E}\left[\left(\mathbf{z} - 1\right)u'\left(w + \alpha(\mathbf{z} - 1)\right)\right]$$

• If $\mathbb{E}[\mathbf{z}] > 1$, then U is strictly increasing at 0 because

$$U'(0) = \mathbb{E}[(\mathbf{z} - 1)u'(w)] = u'(w)(\mathbb{E}[\mathbf{z}] - 1) > 0$$

i.i.d. assets

- ullet Suppose there are two assets with i.i.d. returns ${f z}_1$ and ${f z}_2$
- The investor chooses investments α_1 , $\alpha_2 \geq 0$ with $\alpha_1 + \alpha_2 \leq q$
- Let $U(\alpha_1, \alpha_2)$ denote the investor's expected utility

$$U(\alpha_1, \alpha_2) = \mathbb{E}\left[u(w + \alpha_1(\mathbf{z}_1 - 1) + \alpha_2(\mathbf{z}_2 - 1))\right]$$

Proposition: A risk averse agent will always diversify among risky i.i.d. assets with positive returns, i.e., if $\mathbb{E}[\mathbf{z}_i] > 1$ and $\mathbb{V}[\mathbf{z}_i] > 0$, then $\alpha_1^* > 0$ and $\alpha_2^* > 0$.

proof

- We already know that the optimal portfolio cannot be (0,0) (why?)
- For any portfolio without diversification $(\alpha^0, 0)$ we have that

$$\begin{split} & U(\alpha^{0},0) = \frac{1}{2} \mathbb{E} \left[u \left(w + \alpha^{0} (\mathbf{z}_{1} - 1) \right) \right] + \frac{1}{2} \mathbb{E} \left[u \left(w + \alpha^{0} (\mathbf{z}_{2} - 1) \right) \right] \\ & = \mathbb{E} \left[\frac{1}{2} u \left(w + \alpha^{0} (\mathbf{z}_{1} - 1) \right) + \frac{1}{2} u \left(w + \alpha^{0} (\mathbf{z}_{2} - 1) \right) \right] \\ & < \mathbb{E} \left[u \left(\frac{1}{2} \left(w + \alpha^{0} (\mathbf{z}_{1} - 1) \right) + \frac{1}{2} \left(w + \alpha^{0} (\mathbf{z}_{2} - 1) \right) \right) \right] \\ & = \mathbb{E} \left[u \left(w + \frac{1}{2} \alpha^{0} (\mathbf{z}_{1} - 1) + \frac{1}{2} \alpha^{0} (\mathbf{z}_{2} - 1) \right) \right] \\ & = U \left(\frac{1}{2} \alpha^{0}, \frac{1}{2} \alpha^{0} \right) \end{split}$$

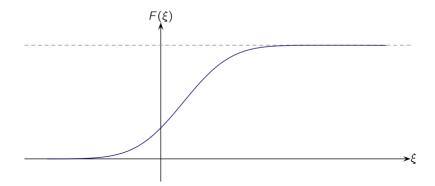
comparing distributions

cumulative distribution functions

• The cumulative distribution functions (c.d.f.) of a random variable \mathbf{x} is the function $F: \mathbb{R} \to [0,1]$ given by

$$F(\xi) = \Pr(\mathbf{x} \le \xi)$$

• C.d.f.s are non-decreasing, left-continuous, satisfy $\lim_{\xi\to\infty}F(\xi)=0$ and $\lim_{\xi\to\infty}F(\xi)=1$



comparing distributions

- Consider random variables **x** and **y** with c.d.f.s *F* and *G*
- That is $F(\xi) = \Pr(\mathbf{x} \le \xi)$ and $G(\xi) = \Pr(\mathbf{y} \le \xi)$
- When can we say that **x** is "greater" than **y**?
 - $\mathbb{E}[\mathbf{x}] > \mathbb{E}[\mathbf{y}]$ is probably not enough
 - $min\{support(\mathbf{x})\} > max\{support(\mathbf{y})\}$ is probably too much
- When can we say that **x** is "riskier" than **y**?
 - $\mathbb{V}[\mathbf{x}] > \mathbb{V}[\mathbf{y}]$ is probably not enough

first-order stochastic dominance

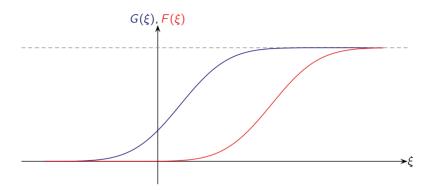
• Say that *F* first-order stochastically dominates *G* if every expected utility maximizer with monotone preferences would choose **x** over **y**

Definition: Say that $F \succ_{\mathsf{FOSD}} G$ if for every non-decreasing function $u : \mathbb{R} \to \mathbb{R}$ we have that $\mathbb{E}[u(\mathbf{x})] \ge \mathbb{E}[u(\mathbf{y})]$

- First-order stochastic dominance can be characterized in terms of distribution functions
- The following proposition asserts that x ≻_{FOSD} y if for every number ξ, y taking a value smaller than ξ is more likely than x taking a value smaller than ξ

Proposition: $\mathbf{x} \succ_{\mathsf{FOSD}} \mathbf{y}$ if and only if $F(\xi) \leq G(\xi)$

first order stochastic dominance



 $F \succ_{\mathsf{FOSD}} G$

proof sketch

- Suppose $F(\xi) > G(\xi)$ for some ξ
 - Let $u: \mathbb{R} \to \mathbb{R}$ be the Bernoulli utility function

$$u(x) = \begin{cases} 1 & \text{if } x > \xi \\ 0 & \text{otherwise} \end{cases}$$

- Then $\mathbb{E}[u(\mathbf{x})] = 1 F(\xi) < 1 G(\xi) = \mathbb{E}[u(\mathbf{y})]$
- Suppose $F(\xi) \leq G(\xi)$ for all ξ and u, F and G are differentiable
 - Integrating by parts:

$$\mathbb{E}[u(\mathbf{x})] = -\int_{-\infty}^{\infty} u'(\xi)F(\xi) d\xi$$

- Therefore

$$\mathbb{E}[u(\mathbf{x})] - \mathbb{E}[u(\mathbf{y})] = -\int_{-\infty}^{\infty} u'(\xi) (F(\xi) - G(\xi)) d\xi \ge 0$$

second order stochastic dominance

- First-order stochastic dominance is a very incomplete ranking
- More comparisons if we further restrict the set of utility functions
- Say that *F* second-order stochastically dominates *G* if every expected utility maximizer with monotone and concave preferences would choose **x** over **y**

Definition: Say that $F \succ_{\mathsf{SOSD}} G$ if for every non-decreasing and concave function $u : \mathbb{R} \to \mathbb{R}$ we have that $\mathbb{E}[u(\mathbf{x})] \geq \mathbb{E}[u(\mathbf{y})]$

• Since concavity is a measure of risk-aversion, second-order stochastic dominance helps us to rank distributions by how much risk they involve

mean preserving spreads

• Say that **y** is a mean preserving spread of **x** if we can write

$$\mathbf{y} = \mathbf{x} + \mathbf{\varepsilon}$$

where $\mathbb{E}[\boldsymbol{\varepsilon}|\mathbf{x}] = 0$

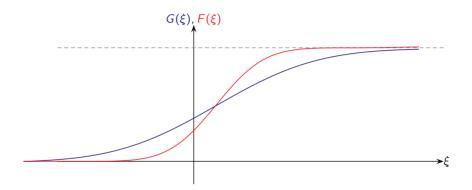
• That is, y equals x plus "noise"

Proposition: The following are equivalent

- (a) $F \succ_{SOSD} G$
- (b) There exist random variables \mathbf{x} and \mathbf{y} with c.d.f.s F and G, resp., such that \mathbf{y} is a mean preserving spread of \mathbf{x}
- (c) For every number ξ

$$\int_{-\infty}^{\xi} F(x) \, dx \le \int_{-\infty}^{\xi} G(y) \, dy$$

second order stochastic dominance



 $F \succ_{\mathsf{SOSD}} G$